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Abstract 
The rapidly increasing power of personal mobile devices 

such as smart phones, tablets, etc. is providing much 

richer contents and social interactions to users on the 

move. This trend however is throttled by the limited 

battery life of mobile devices and unstable wireless 

connectivity, achieving the highest possible quality of 

service experienced by mobile users not feasible. The 

recent cloud computing technology, with its rich 

resources to compensate for the limitations of mobile 

devices and connections, can potentially provide an ideal 

platform to support the desired mobile services. Critical 

challenges arise on how to effectively exploit cloud 

resources to facilitate mobile services, especially those 

with stringent interaction delay requirements. In this 

paper, we propose the design of a Cloud-based, Mobile 

Smart TV. This system effectively utilizes both IaaS 

(Infrastructure-as-a-Service) and PaaS (Platform-as-a-

Service) cloud delivery services to offer the living-room 

experience of video watching to a group of disparate 

mobile users who can interact socially while watching 

and sharing the video. To guarantee good streaming 

quality as experienced by the mobile users with time-

varying wireless connectivity, we employ a surrogate for 

each user in the IaaS cloud for video downloading and 

social exchanges on behalf of the user. The surrogate 

performs efficient stream transcoding that matches the 

current connectivity quality of the mobile user. Given the 

battery life as a key performance bottleneck, we advocate 

the use of burst transmission from the surrogates to the 

mobile users, and carefully decide the burst size which 

can lead to high energy efficiency and streaming quality. 

Social interactions among the users, in terms of 

spontaneous textual exchanges, are effectively achieved 

by efficient designs of data storage with BigTable and 

dynamic handling of large volumes of concurrent 

messages in a typical PaaS cloud. These various designs 

for flexible transcoding capabilities, battery efficiency of 

mobile devices and spontaneous social interactivity 

together provide an ideal platform for smart TV services 

 

Keywords: Computers and information processing, 

Mobile computing, Communications technology, 

TV, Mobile TV. 

1. Introduction 

Thanks to the revolutionary “reinventing the 

phone” Campaigns initiated by Apple Inc. in 2007, 

Smartphones  

 

and Tablets nowadays are shipped with multiple 

microprocessor cores and gigabyte RAMs; they 

possess more computation power than personal 

computers of a few years ago. On the other hand, 

the wide deployment of 3G broadband cellular 

infrastructures further fuels the trend. Apart from 

common productivity tasks like emails and web 

surfing, smartphones are flexing their strength in 

more challenging scenarios such as real time video 

streaming and online gaming, as well as serving as 

a main tool for social exchanges. It is natural to 

resort to cloud computing, the newly-emerged 

computing paradigm for low-cost agile, scalable 

resource supply, to support power-efficient mobile 

data communication. With virtually infinite 

hardware and software resources, the cloud can 

offload the computation and other tasks involved in 

a mobile application and may significantly reduce 

battery consumption at the mobile devices, if a 

proper design is in place. Tough challenge in front 

of us is how to effectively exploit cloud services to 

facilitate mobile applications. In this paper, we 

describe the design of a novel mobile social TV 

system, “Smart TV”, which can effectively utilize 

the cloud computing paradigm to offer a living-

room experience of video watching to  disparate 

mobile users with spontaneous social interactions. 

In Smart TV, mobile users can import a live or on-

demand video to watch from any video streaming 

site, invite their friends to watch the video 

concurrently, and chat with their friends while 

watching the video. As opposed to traditional TV 

watching, mobile social TV is well suited to 

today’s Traditional life style, where family and 

friends may be distributed geographically but hope 

to share a co-viewing experience. We design Smart 

TV to seamlessly utilize agile resource support and 

rich functionalities offered by both an IaaS 

(Infrastructure- as-a-Service) cloud and a PaaS 

(Platform-as-a-Service) cloud. Our design achieves 

the following goals. 
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1.1 Encoding Flexibility 

 

Different mobile devices have various sized 

displays, customized playback hardwares, and 

various codecs. Traditional solutions would adopt a 

few encoding formats ahead of the release of a 

video program. But even the most generous content 

providers would not be able to attend to all possible 

mobile platforms, if not only to the current hottest 

models. Smart TV customizes the streams for 

different devices at real time, by offloading the 

transcoding tasks to an IaaS cloud. In particular, we 

novelly employ a surrogate to each user, which is a 

virtual machine (VM) in the IaaS cloud. The 

surrogate downloads the video on  behalf of the 

user and transcodes it into the desired formats, 

while catering to the specific configurations of the 

mobile device as well as the current connectivity 

quality.  

 

1.2. Battery Efficiency 
 

A breakdown analysis conducted by Carroll and G. 

Heiser [6] indicates that the network modules (such 

as Wi-Fi and 3G) and the display contribute to a 

significant portion of the overall power 

consumption in a mobile device, dwarfing usages 

from other hardware modules including CPU, 

memory, etc. We target at energy saving coming 

from the network module of smart phones through 

an efficient data transmission mechanism design. 

We focus on 3G wireless networking as it is getting 

more widely used and challenging in our design 

than Wi-Fi based transmissions. Based on cellular 

network traces from real-world 3G carriers, we 

investigate the key 3G configuration parameters 

such as the power states and the inactivity timers, 

and design a novel burst transmission mechanism 

for streaming from the surrogates to them mobile 

devices 

 

1.3. Spontaneous Social Interactivity 
 

Multiple mechanisms are included in the design of 

Smart TV to enable spontaneous social 

interactivity, co-viewing experience. First, efficient 

synchronization mechanisms are proposed to 

guarantee that friends joining in a video program 

may watch the same portion (if they choose to), and 

share immediate reactions and comments. Although 

synchronized playback is inherently a feature of 

traditional TV, the current Internet video services 

(e.g., Web 2.0 TV) rarely offer such a service. 

Second, efficient message communication 

mechanisms are designed for social textual 

interactions among friends, and different types of 

messages are prioritized in their retrieval 

frequencies to avoid unnecessary interruptions of 

the viewing progress. For example, online friend 

lists can be retrieved at longer intervals at each 

user, while invitation and chat messages should be 

delivered more timely. We adopt textual chat 

messages rather than voice in our current design, 

believing that text chats are less distractive to 

viewers and easier to write/read and manage by any 

user.  

 

1.4. Portability 

 
A prototype Smart TV system is implemented 

following the philosophy of “Write Once, Run 

Anywhere” (WORA) “100% Pure Java” [4] 

platform used to implement both the front-end 

mobile modules and the back-end server modules, 

with well-designed generic data models suitable for 

any Big Table-like data store; the only exception is 

the transcoding module, which is implemented 

using ANSI C for performance reasons and uses no 

platform-dependent or proprietary APIs. The client 

module can run on any mobile devices supporting 

HTML5, including Android phones, IOS systems, 

etc. To showcase its performance, we deploy the 

system on Amazon EC2 and Google App Engine, 

and conduct thorough tests on IOS platforms.  

 

2. RELATED WORK 
  

A huge amount of mobile TV systems have sprung 

up in recent years, driven by both hardware and 

software advances in mobile devices. Some early 

systems bring the “living-room” experience to 

small screens on the move. But they focus more on 

barrier clearance in order to realize the convergence 

of the mobile network and the television network, 

rather than exploring the demand of “social 

interactions” among mobile users. Coppens et al. 

[4] try to add rich social interactions to TV but their 

design is limited to traditional broadcast program 

channels. Though inspiring, these designs are not 

that suitable for being applied directly in a mobile 

environment. Chuah et al. [6] extend the social 

experiences of viewing traditional broadcast 

programs to mobile devices, but have yet to deliver 

a well integrated framework. Schatz et al. [7], [8] 

have designed a mobile social TV system, which is 

customized for DVB-H networks and Symbian 

devices as opposed to a wider audience. Compared 

to these prior work and systems, we target at a 

design for a generic, portable mobile social TV 

framework, featuring “co-viewing experiences” 

among friends over geographical separations 

through mobile devices. Our framework is open to 

all Internet-based video programs, either live or on-

demand, and supports a wide range of devices with 

HTML5 compatible browsers installed, without any 

other mandatory component on the devices. For 

any application targeted at mobile devices, 
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consumes less power is perennially one of the 

major concerns and challenges. Our work is able to 

achieve a significant (about 30%) power saving, by 

opportunistically switching the device between 

low-power and high-power transmission modes 

during streaming. Some existing work (e.g., 

Anastasi et al. [9]) have provided valuable 

guidelines for energy saving over WiFi 

transmissions; our work focuses on 3G cellular 

transmissions which have significantly different 

power models; 3G is a more practical wireless 

connection technology for mobile TVs on the go at 

the present time. Cloud computing had its debut 

with much fanfare and is now deemed a most 

powerful hosting platform in many areas including 

mobile computing. Satyanarayan an et al. [1] 

suggest offloading mobile devices computation 

workload to a nearby resource-rich infrastructure 

(i.e., Cloudlets) by dynamic VM synthesis. Kosta et 

al. [2] propose a virtualization framework for 

mobile code offloading to the cloud. Zhang et al. 

[10] introduce an elastic mobile application model 

by offloading part of the applications (weblets) to 

an IaaS cloud. Recently, attentions have been 

drawn to enabling media applications using th

cloud, for both media storage [11] and processing 

[12] Conversely, the prototype we implement is 

browser-based and platform independent; it 

supports both live channels, VoD channels and 

personal channels hosted by any user, with wider 

usage ranges and flexible extensibility.     

 

 

 

 
Fig. 1. The architecture of Smart T.V.

 

3. Smart T.V: Architecture and Design
 

As a novel Cloud-based Mobile Smart TV 

system, Smart T.V provides two major 

functionalities to participating mobile users:
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3. Smart T.V: Architecture and Design 

based Mobile Smart TV 

system, Smart T.V provides two major 

functionalities to participating mobile users: 

(1) Universal streaming. A user can stream a 

live or on-demand video from any video sources he 

chooses, such as a TV program provider or an 

Internet video streaming site, with tailored 

encoding formats and rates for the device each 

time.  

(2) Co-viewing with social exchanges. A user 

can invite multiple friends to watch the same video, 

and exchange text messages while watching. The 

group of friends watching the same video is 

referred to as a session. The mobile user who 

initiates a session is the host of the

present the architecture of Smart T.V and the 

detailed designs of the different modules in the 

following. 

 

3.1. Key Modules 
 

Fig. 1 gives an overview of the architecture of 

Smart T.V. A surrogate (i.e., a virtual machine 

(VM) instance), or a VM surrogate equivalently, is 

created for each online mobile user in an IaaS 

cloud infrastructure. The surrogate acts as a proxy 

between the mobile device and the video sources, 

providing transcoding services as well as 

segmenting the streaming traffic for 

transmission to the user. The surrogates exchange 

social messages via a back-end PaaS cloud, which 

adds scalability and robustness to the system. There 

is a gateway server in Smart T.V that keeps track of 

participating users and their VM surrogates, 

can be implemented by a standalone server or VMs 

in the IaaS cloud. The design of Smart T.V can be 

divided into the following major functional 

modules. 

• Transcoder: It resides in each surrogate, and 

is responsible for dynamically deciding how to 

encode the video stream from the video source in 

the recommended format, dimension, and bit rate. 

Before deliver to the user, the video stream is 

further encapsulated into a proper transport stream. 

In our implementation, each video is exported as 

MPEG-2 transport streams, which is the de

standard nowadays to deliver digital video and 

audio streams over lossy medium. 

• Reshaper: The reshaper in each surrogate 

receives the encoded transport stream from the 

transcoder, chops it into 

segments, and then sends each segment in a 

burst to the mobile device upon its request (i.e., a 

burst transmission mechanism), to achieve the best 

power efficiency of the device. The burst size, i.e., 

the amount of data in each burst, is carefully 

decided according to the 3G tec

implemented by the corresponding carrier.

• Social Cloud: The social cloud is built on top 

of any general PaaS cloud services with BigTable 

like data store to yield better economies of scale 

without being locked down to any specific 
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power efficiency of the device. The burst size, i.e., 

the amount of data in each burst, is carefully 
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implemented by the corresponding carrier. 
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of any general PaaS cloud services with BigTable 

like data store to yield better economies of scale 

without being locked down to any specific 
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proprietary platforms. Despite its implementation 

on Google App Engine (GAE) as a proof of 

concept, our Function prototype can be readily 

ported to other platforms. It stores all the social 

data in the system, including the online statuses of 

all users, records of the existing sessions, and 

messages (invitations and chat histories) in each 

session. The social data are categorized into 

different kinds and split into different entities (in 

analogy to tables and rows in traditional relational 

database, respectively). The social cloud is queried 

from time to time by the VM surrogates. 

• Messenger: The messenger is the client part 

of the social cloud, residing in each surrogate in the 

IaaS cloud. The Messenger periodically queries the 

social cloud for the social data on behalf of the 

mobile user and pre-processes the data into a light-

weighted format (plain text files), at a much lower 

frequency. The plain text files (in XML formats) 

are asynchronously delivered from the surrogate to 

the user in a traffic-friendly manner, i.e., little 

traffic is incurred. In the reverse direction, the 

messenger disseminates this user’s messages 

(invitations and chat messages) to other users via 

the data store of the social cloud.  

• Syncer: The syncer on a surrogate guarantees 

that viewing progress of this user is within a time 

window of other users in the same session (if the 

user chooses to synchronize with others). To 

achieve this, the syncer periodically retrieves the 

current playback progress of the session host and 

instructs its mobile user to adjust its playback 

position. In this way, friends can enjoy the “sitting 

together” viewing experience. Different from the 

design of communication among messengers. 

• Mobile Client: The mobile client is not 

necessary to install any specific client software in 

order to use Smart T.V, as long as it has an 

HTML5 compatible browser (e.g., Mobile Safari, 

Chrome, etc.) and supports the HTTP Live 

Streaming protocol [13]. Both are widely supported 

on most state-of-the-art smart phones. 

• Gateway: The gateway provides 

authentication services for users to log in to the 

Smart T.V system, and stores users  credentials in a 

permanent table of a MySQL database it has 

installed. It also stores information of the pool of 

currently available VMs in the IaaS cloud in 

another in-memory table. After a user successfully 

logs in to the system, a VM surrogate will be 

assigned from the pool to the user. The in-memory 

table is used to guarantee small query latencies, 

since the VM pool is updated frequently as the 

gateway reserves and destroys VM instances 

according to the current workload. We describe the 

key designs in Smart T.V in the following.  

 

 

 

3.2. Loosely Coupled Interfaces 
 

Similar in spirit to web services, the interfaces 

between different modules in Smart T.V, i.e., 

mobile users, VM surrogates, and the social cloud, 

are based on HTTP, a universal standard for all 

Internet-connected devices or platforms. Thanks to 

the loose coupling between users and the 

infrastructure, almost any mobile device is ready to 

gain access to the Smart T.V services, as long as it 

is installed with an HTTP5 browser. The VM 

surrogates provisioned in the IaaS cloud co-operate 

with the social cloud implemented on a PaaS cloud 

service via HTTP as well, with no knowledge of 

the inner components and underlying technologies 

of each other, which contributes significantly to the 

portability and easy maintenance of the system. For 

social message exchanges among friends, Smart 

T.V employs asynchronous communication.  

 

3.3. Pipelined Video Processing 
 

Both live streaming of real time contents and on-

demand streaming of stored contents are supported 

in Smart T.V. Video processing in each surrogate is 

designed to work on the fly, i.e., the transcoder 

conducts real time encoding from the video source, 

the encoded video is fed immediately into the 

reshaper for segmentation and transmission, and a 

mobile user can start viewing the video as soon as 

the first segment is received. To support dynamic 

bit rate switch, the transcoder launches multiple 

threads to transcode the video into multiple bit rates 

once the connection speed between the surrogate 

and the mobile user changes. The IaaS represents 

an ideal platform for implementing such 

computation intensive jobs. 

 

3.4. Burst Transmissions 

 
 3.4.1 3G Power States 

 
Different from Wi-Fi which is more similar to the 

LANed Internet access, 3G cellular services suffer 

from the limited radio resources, and therefore each 

user equipment (UE) needs to be regulated by a 

Radio Resource Control (RRC) state machine. 

Different 3G carriers may customize and deploy 

complex states in their respective cellular networks. 

Different states indicate different levels of allocated 

radio resources, and hence different levels of 

energy consumptions. For ease of implementation, 

we consider three basic states in our design, which 

are commonly employed by many carriers, namely 

CELL_DCH (a dedicated physical channel is 

allocated to the UE in both the uplink and the 

downlink), CELL_FACH (no dedicated channel is 

allocated but the UE is assigned a default common 
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transport channel in the uplink), and IDLE, in 

decreasing order of power levels. Contrary to 

intuition, the energy consumption for data 

transmission depends largely on the state a UE is 

working in, but has little to do with the volume of 

data transmitted, i.e., a UE may stay at a high

power state (CELL_DCH) for data transmission 

even the data rate is very low (this has also been 

verified in our experiments in Section V). For 

example, if a UE working at a high-

does not incur any data traffic for a pre

period of time (measured by a critical inactivity 

timer), the state of the UE will be transferred to a 

low-power one; when the volume of data traffic 

rises, the UE “wakes up” from a low

and moves to a high-power one.  

 

3.4.2 Transmission Mechanism 

 
In Smart T.V, we aim at maximum conservation of 

the battery capacity of the mobile device, and 

design a burst transmission mechanism for 

streaming between the surrogate and the device. 

Using the HTTP live streaming protocol [13], the 

mobile device sends out requests for the next 

segment of the video stream from time to time. The 

surrogate divides the video into segments, and 

sends each segment in a burst transmission to the 

mobile device, upon such a request. When the 

mobile device is receiving a segment, it operates in 

the high-power state (CELL_DCH); when there is 

nothing to receive, it transfers to the low

state (IDLE) via the intermediate state 

(CELL_FACH), and remains there until the next 

burst (segment) arrives. 

 

 3.4.3 Burst Size 

 
To decide the burst size, i.e., the size of the 

segment transmitted in one burst, we need to take 

into consideration characteristics of m

streaming and energy consumption during state 

transitions. For video streaming using a fixed 

device without power concerns, it is desirable to 

download as much of a video as what the 

connection bandwidth allows; however, for 

streaming over a cellular network, leading to a 

waste of the battery power and the cellular data fee 

due to their download. Hence, the bursty size 

should be kept small, to minimize battery 

consumption and traffic charges. We next derive a 

lower bound on the burst size, which guara

positive energy saving by such intelligent state 

transition as compared to the continuous 

transmission, as follows: 
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Fig. 2: Power consumption over time.

 

4. Live T.V: Prototype Implementation
 

Following the design guidelines in Section III, we 

have implemented a real-world mobile social TV 

system, and deployed it on the Google App Engine 

(GAE) and Amazon EC2 clouds, which are the two 

most widely used public PaaS and IaaS cloud 

platforms. GAE, as a PaaS cloud, provides rich 

services on top of Google’s data centers and 

enables rapid deployment of Java

Python-based applications. Hence, GAE is an ideal 

platform for implementing our social cloud, which 

dynamically handles large volumes of messages. 

On the other hand, GAE imposes many constra

on application deployment, e.g., lack of support for 

multi-threading, file storage, etc., which may 

hinder both computation-intensive jobs and content 

distribution applications. Amazon EC2  is a 

representative IaaS cloud, offering raw hardware 

resources including CPU, storage, and networks to 

users. Comparing to a common PaaS cloud, EC2 is 

an appropriate platform for computation

tasks in Smart T.V. 
 

4.1. Client Use of Smart T.V 
 

All mobile devices installed with HTML5 

compatible browsers can use Smart T.V services, 

as long as the HTTP Live Streaming (HLS) [13] 

protocol is supported. The user first connects to the 

login page of Smart T.V, as illustrated in the top 

left corner of Fig. 3. After the user successfully 

logs in through the gateway, he is assigned a VM 

surrogate from the VM pool (the hostnames of 

available VMs, e.g., ec2-50-16-

1.amazonaws.com, are maintained in an in

table of a MySQL database deployed in the 

gateway). Then the user is automatically redirected 

to the assigned VM surrogate, and welcomed by a 

portal page as shown on the right-hand side of Fig. 

3. Upon user login, the portal collects the device 

configuration information by examining the “User

Agent” header values, and this information will be 

sent to its surrogate for decision making of the 

video encoding formats. The user can enter the 

URL of the video or live broadcast he wishes to 
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Following the design guidelines in Section III, we 

world mobile social TV 

system, and deployed it on the Google App Engine 

(GAE) and Amazon EC2 clouds, which are the two 

most widely used public PaaS and IaaS cloud 

platforms. GAE, as a PaaS cloud, provides rich 

gle’s data centers and 

enables rapid deployment of Java-based and 

based applications. Hence, GAE is an ideal 

platform for implementing our social cloud, which 

dynamically handles large volumes of messages. 

On the other hand, GAE imposes many constraints 

on application deployment, e.g., lack of support for 

threading, file storage, etc., which may 

intensive jobs and content 

distribution applications. Amazon EC2  is a 

representative IaaS cloud, offering raw hardware 

es including CPU, storage, and networks to 

users. Comparing to a common PaaS cloud, EC2 is 

an appropriate platform for computation-intensive 

All mobile devices installed with HTML5 

use Smart T.V services, 

as long as the HTTP Live Streaming (HLS) [13] 

protocol is supported. The user first connects to the 

login page of Smart T.V, as illustrated in the top 

left corner of Fig. 3. After the user successfully 

e is assigned a VM 

surrogate from the VM pool (the hostnames of 

-xx-xx.compute-

1.amazonaws.com, are maintained in an in-memory 

table of a MySQL database deployed in the 

gateway). Then the user is automatically redirected 

e assigned VM surrogate, and welcomed by a 

hand side of Fig. 

3. Upon user login, the portal collects the device 

configuration information by examining the “User-

Agent” header values, and this information will be 

s surrogate for decision making of the 

video encoding formats. The user can enter the 

URL of the video or live broadcast he wishes to 
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watch, on the “Subscribe” tab of the portal; after he 

clicks the “Subscribe” button, the address of the 

video is sent to the VM surrogate, which 

downloads the stream on the user’s behalf, 

transcodes and sends properly encoded segments to 

the user. When watching a video, the user can 

check out his friends’ status (online or offline, 

which video they are currently watching) on 

“Friends” tab (a snapshot is given in Fig. 4(a)), and 

invite one or more friends to join him in watching 

the video.. Users in the same session can exchange 

opinions and comments on the “Chat” tab (a 

snapshot is given in Fig. 4(b)), where new chat 

messages can be entered and the chat history of the 

session is shown.  

 

4.2. VM Surrogates 
 

All the VM surrogates are provisioned from 

Amazon EC2 web services and tracked by the 

gateway. We create our own AMI (ami

based on Linux kernel 2.6.35.14, the default image 

Amazon provides [15]. Due to the intensive 

computation involved, we propose to implement all 

the video processing related tasks using ANSI C, to 

guarantee the performance. We have also installed 

a Tomcat web server (version 6.5) to serve as a

Servlet container and a file server on each 

surrogate. Both FFmpeg and Tomcat are open 

source projects. Once a VM surrogate receives a 

video subscription request from the user, it 

downloads the video from the source URL, and 

processes the video stream by transcoding and 

segmentation, based on the collected device 

configurations by the portal. For example, in our 

experiments, the downloaded stream is transcoded 

into a high-quality stream from a low

stream depends on the device capability.

 

 

 
Fig. 3. Client UI of Smart T.V 
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default image 

Amazon provides [15]. Due to the intensive 

computation involved, we propose to implement all 

the video processing related tasks using ANSI C, to 

guarantee the performance. We have also installed 

a Tomcat web server (version 6.5) to serve as a 

Servlet container and a file server on each 

surrogate. Both FFmpeg and Tomcat are open 

source projects. Once a VM surrogate receives a 

video subscription request from the user, it 

downloads the video from the source URL, and 

transcoding and 

segmentation, based on the collected device 

configurations by the portal. For example, in our 

experiments, the downloaded stream is transcoded 

quality stream from a low-quality 

stream depends on the device capability. 

 

 
Fig. 4. “Friend” and “Chat” tabs. (a) “Friend tab” (b) “Chat tab”.

 

The high-quality  stream has a “480 272” resolution 

with 24 frames per second, while the low

one has a “240 136” resolution with 10 frames per 

second. Fig. 5 shows the streaming architecture in 

our customized VM image. Here, the modules on 

social message exchanges are omitted, which will 

be presented in Fig. 6. 

 

4.3 Data Models in the Social Cloud
 

We use GAE mainly as the back-end data store to 

keep the 

transient states and data of Smart T.V, including 

users online presence status, social messages 

(invitation and chat messages) in all the sessions. 

With Jetty as the underlying Servlet container, most 

Java-based applications can be easily migrated to 

GAE, under limited usage constraints, where no 

platform-specific APIs are enforced for the 

deployment. GAE provides both its Java 

Persistence API. 

 

 

 
Fig. 5. Streaming architecture in each customized VM image 

(ami-b6f220df). 
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transient states and data of Smart T.V, including 

users online presence status, social messages 

(invitation and chat messages) in all the sessions. 

With Jetty as the underlying Servlet container, most 

based applications can be easily migrated to 

AE, under limited usage constraints, where no 

specific APIs are enforced for the 

deployment. GAE provides both its Java 
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Fig. 6. Social message exchanges via Google App Engine.

 

 

5. REAL-WORLD EXPERIMENTS
 

We carry out both unit tests and performance 

evaluations of Smart T.V deployed on Amazon 

EC2 and Google App Engine. The experiments are 

conducted over the 3G cellular network of 3HK, 

which is one of the largest Telecom operators in 

Hong Kong. Fig. 7 shows the power consumption 

levels on the phone over time, in terms of portions 

of the highest device power level. The red vertical 

lines represent the starting points of playback 

periods when the Safari runs in the foreground, and 

the green lines represent the finish times of 

playback periods when the Safari is suspended in 

the background. We can see that our state transition 

model in Fig. 2 is verified by these real

measurements: when there is data transmission, the 

device operates at the high power mode; when data 

transmission stops, the transmission power of the 

device first decreases to an intermediate level, and 

then to a very low level. 

 

 
Fig. 7. Power consumption over time on an iPhone 4
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Fig. 7. Power consumption over time on an iPhone 4S. 

 

Fig. 8. Power consumption over time with different burst 

transmission sizes 

 

5.1. Startup Latency of Video Playback

 

We evaluate the transcoding performance on the 

surrogates in Smart TV, first by measuring the 

playback startup latency on the surrogates, from the 

time when the video subscription request is 

received from the mobile user to the time when the 

first transcoded burst segment is generated. In our 

experiments, we tested the network connection 

bandwidth between the Amazon EC2 instances

the YouTube website, and found that video 

downloading from YouTube website to the 

instances is very fast. Fig  9 shows that in general, 

the longer the burst interval is, the larger the 

segment of video to transcode is, and thus the 

longer the startup latency. 

 

5.2. Social Interaction Latencies 
 

The service latency of Google Ap

critical to theoverall performance of Smart TV. In 

this set of experiments we launch a VM surrogate 

in each of four different regions (corresponding to 

four mobile users), i.e., “east-1

“east-1-c” and “east-1-d”, all of which join the 

same session. 

uding 

Fig. 9. Jitters and the stall durations

 

Fig. 10. Post latency to GAE.

 

Fig. 11. Query latency from GAE.

 

We evaluate two critical latencies: one is the post 

latency to the GAE, i.e., the time from when a 
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5.1. Startup Latency of Video Playback 

We evaluate the transcoding performance on the 

surrogates in Smart TV, first by measuring the 

surrogates, from the 

time when the video subscription request is 

received from the mobile user to the time when the 

first transcoded burst segment is generated. In our 

experiments, we tested the network connection 

bandwidth between the Amazon EC2 instances and 

the YouTube website, and found that video 

downloading from YouTube website to the 

instances is very fast. Fig  9 shows that in general, 

the longer the burst interval is, the larger the 

segment of video to transcode is, and thus the 

 

The service latency of Google App Engine is 

overall performance of Smart TV. In 

this set of experiments we launch a VM surrogate 

in each of four different regions (corresponding to 

1-a”, “east-1-b”, 

d”, all of which join the 

 
Fig. 9. Jitters and the stall durations 

 
Fig. 10. Post latency to GAE. 

 
Fig. 11. Query latency from GAE. 

We evaluate two critical latencies: one is the post 

latency to the GAE, i.e., the time from when a 
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message is sent out from a surrogate to the time 

when it receives confirmation from GAE that the 

message is successfully recorded in the social 

cloud; the other is the query latency, i.e., the time 

from when a query is sent out from a surrogate to 

the time when the queried message is received at 

the surrogate. Figs. 10 and 11 show the average 

values of the two types of latencies among 

surrogates in all regions, during a 155-second run 

of the experiments. Our results are mostly 

consistent with the 978-ms post latency and 106-ms 

query latency (our latencies additionally include a 

round-trip time between a surrogate and the GAE). 

Confirming the detailed reason is part of our future 

work. 

 

6. Concluding Remarks and Future 

Enhancement 

 
This paper presents our view of what might become 

a trend 

for mobile TV, i.e., mobile social TV based on 

agile resource supports and rich functionalities of 

cloud computing services. We introduce a generic 

and portable mobile social TV framework, Smart 

T.V, that makes use of both an IaaS cloud and a 

PaaS cloud. The framework provides efficient 

transcoding services for most platforms under 

various network conditions and supports for co-

viewing experiences through timely chat exchanges 

among the viewing users. By employing one 

surrogate VM for each mobile user, we achieve 

ultimate scalability of the system. Through an in-

depth investigation of the power states in 

commercial 3G cellular networks, we then propose 

an energy- efficient burst transmission mechanism 

that can effectively increase the battery lifetime of 

user devices. We have implemented a realistic 

prototype of Smart T.V, deployed on Amazon EC2 

and Google App Engine, where EC2 instances 

serve as the mobile users’ surrogates and GAE as 

the social cloud to handle the large volumes of 

social message exchanges. The experimental results 

prove the superior performance of Smart T.V, in 

terms of transcoding efficiency, power saving, 

timely social interaction, and scalability. Much 

more, however, can be done to enhance Smart T.V 

to have product-level  performance. In the current 

prototype, we do not enable sharing of encoded 

streams (in the same format/bit rate) among 

surrogates of different users. In our future work, 

such sharing can be enabled and carried out in a 

peer-to-peer fashion, e.g., the surrogate of a newly 

joined user may fetch the transcoded streams 

directly from other surrogates, if they are encoded 

in the format/bit rate that the new user wants.  For 

implementing social interactions, most BigTable- 

like data stores (including GAE) support memcache 

[17] which is a highly efficient secondary storage 

on the data stores.  
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