
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 1

Live T.V Experience in Smart Phones with Cloud using

Video Transcoding and Surrogate

Pradeep B.M
1
, Venkatravanna Nayak K

2
, Krishna Gudi

3

1, 2, 3

GSS Institute of Technology, Kengeri, Bangalore–560064, Karnataka

Abstract
The rapidly increasing power of personal mobile devices

such as smart phones, tablets, etc. is providing much

richer contents and social interactions to users on the

move. This trend however is throttled by the limited

battery life of mobile devices and unstable wireless

connectivity, achieving the highest possible quality of

service experienced by mobile users not feasible. The

recent cloud computing technology, with its rich

resources to compensate for the limitations of mobile

devices and connections, can potentially provide an ideal

platform to support the desired mobile services. Critical

challenges arise on how to effectively exploit cloud

resources to facilitate mobile services, especially those

with stringent interaction delay requirements. In this

paper, we propose the design of a Cloud-based, Mobile

Smart TV. This system effectively utilizes both IaaS

(Infrastructure-as-a-Service) and PaaS (Platform-as-a-

Service) cloud delivery services to offer the living-room

experience of video watching to a group of disparate

mobile users who can interact socially while watching

and sharing the video. To guarantee good streaming

quality as experienced by the mobile users with time-

varying wireless connectivity, we employ a surrogate for

each user in the IaaS cloud for video downloading and

social exchanges on behalf of the user. The surrogate

performs efficient stream transcoding that matches the

current connectivity quality of the mobile user. Given the

battery life as a key performance bottleneck, we advocate

the use of burst transmission from the surrogates to the

mobile users, and carefully decide the burst size which

can lead to high energy efficiency and streaming quality.

Social interactions among the users, in terms of

spontaneous textual exchanges, are effectively achieved

by efficient designs of data storage with BigTable and

dynamic handling of large volumes of concurrent

messages in a typical PaaS cloud. These various designs

for flexible transcoding capabilities, battery efficiency of

mobile devices and spontaneous social interactivity

together provide an ideal platform for smart TV services

Keywords: Computers and information processing,

Mobile computing, Communications technology,

TV, Mobile TV.

1. Introduction

Thanks to the revolutionary “reinventing the

phone” Campaigns initiated by Apple Inc. in 2007,

Smartphones

and Tablets nowadays are shipped with multiple

microprocessor cores and gigabyte RAMs; they

possess more computation power than personal

computers of a few years ago. On the other hand,

the wide deployment of 3G broadband cellular

infrastructures further fuels the trend. Apart from

common productivity tasks like emails and web

surfing, smartphones are flexing their strength in

more challenging scenarios such as real time video

streaming and online gaming, as well as serving as

a main tool for social exchanges. It is natural to

resort to cloud computing, the newly-emerged

computing paradigm for low-cost agile, scalable

resource supply, to support power-efficient mobile

data communication. With virtually infinite

hardware and software resources, the cloud can

offload the computation and other tasks involved in

a mobile application and may significantly reduce

battery consumption at the mobile devices, if a

proper design is in place. Tough challenge in front

of us is how to effectively exploit cloud services to

facilitate mobile applications. In this paper, we

describe the design of a novel mobile social TV

system, “Smart TV”, which can effectively utilize

the cloud computing paradigm to offer a living-

room experience of video watching to disparate

mobile users with spontaneous social interactions.

In Smart TV, mobile users can import a live or on-

demand video to watch from any video streaming

site, invite their friends to watch the video

concurrently, and chat with their friends while

watching the video. As opposed to traditional TV

watching, mobile social TV is well suited to

today’s Traditional life style, where family and

friends may be distributed geographically but hope

to share a co-viewing experience. We design Smart

TV to seamlessly utilize agile resource support and

rich functionalities offered by both an IaaS

(Infrastructure- as-a-Service) cloud and a PaaS

(Platform-as-a-Service) cloud. Our design achieves

the following goals.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 2

1.1 Encoding Flexibility

Different mobile devices have various sized

displays, customized playback hardwares, and

various codecs. Traditional solutions would adopt a

few encoding formats ahead of the release of a

video program. But even the most generous content

providers would not be able to attend to all possible

mobile platforms, if not only to the current hottest

models. Smart TV customizes the streams for

different devices at real time, by offloading the

transcoding tasks to an IaaS cloud. In particular, we

novelly employ a surrogate to each user, which is a

virtual machine (VM) in the IaaS cloud. The

surrogate downloads the video on behalf of the

user and transcodes it into the desired formats,

while catering to the specific configurations of the

mobile device as well as the current connectivity

quality.

1.2. Battery Efficiency

A breakdown analysis conducted by Carroll and G.

Heiser [6] indicates that the network modules (such

as Wi-Fi and 3G) and the display contribute to a

significant portion of the overall power

consumption in a mobile device, dwarfing usages

from other hardware modules including CPU,

memory, etc. We target at energy saving coming

from the network module of smart phones through

an efficient data transmission mechanism design.

We focus on 3G wireless networking as it is getting

more widely used and challenging in our design

than Wi-Fi based transmissions. Based on cellular

network traces from real-world 3G carriers, we

investigate the key 3G configuration parameters

such as the power states and the inactivity timers,

and design a novel burst transmission mechanism

for streaming from the surrogates to them mobile

devices

1.3. Spontaneous Social Interactivity

Multiple mechanisms are included in the design of

Smart TV to enable spontaneous social

interactivity, co-viewing experience. First, efficient

synchronization mechanisms are proposed to

guarantee that friends joining in a video program

may watch the same portion (if they choose to), and

share immediate reactions and comments. Although

synchronized playback is inherently a feature of

traditional TV, the current Internet video services

(e.g., Web 2.0 TV) rarely offer such a service.

Second, efficient message communication

mechanisms are designed for social textual

interactions among friends, and different types of

messages are prioritized in their retrieval

frequencies to avoid unnecessary interruptions of

the viewing progress. For example, online friend

lists can be retrieved at longer intervals at each

user, while invitation and chat messages should be

delivered more timely. We adopt textual chat

messages rather than voice in our current design,

believing that text chats are less distractive to

viewers and easier to write/read and manage by any

user.

1.4. Portability

A prototype Smart TV system is implemented

following the philosophy of “Write Once, Run

Anywhere” (WORA) “100% Pure Java” [4]

platform used to implement both the front-end

mobile modules and the back-end server modules,

with well-designed generic data models suitable for

any Big Table-like data store; the only exception is

the transcoding module, which is implemented

using ANSI C for performance reasons and uses no

platform-dependent or proprietary APIs. The client

module can run on any mobile devices supporting

HTML5, including Android phones, IOS systems,

etc. To showcase its performance, we deploy the

system on Amazon EC2 and Google App Engine,

and conduct thorough tests on IOS platforms.

2. RELATED WORK

A huge amount of mobile TV systems have sprung

up in recent years, driven by both hardware and

software advances in mobile devices. Some early

systems bring the “living-room” experience to

small screens on the move. But they focus more on

barrier clearance in order to realize the convergence

of the mobile network and the television network,

rather than exploring the demand of “social

interactions” among mobile users. Coppens et al.

[4] try to add rich social interactions to TV but their

design is limited to traditional broadcast program

channels. Though inspiring, these designs are not

that suitable for being applied directly in a mobile

environment. Chuah et al. [6] extend the social

experiences of viewing traditional broadcast

programs to mobile devices, but have yet to deliver

a well integrated framework. Schatz et al. [7], [8]

have designed a mobile social TV system, which is

customized for DVB-H networks and Symbian

devices as opposed to a wider audience. Compared

to these prior work and systems, we target at a

design for a generic, portable mobile social TV

framework, featuring “co-viewing experiences”

among friends over geographical separations

through mobile devices. Our framework is open to

all Internet-based video programs, either live or on-

demand, and supports a wide range of devices with

HTML5 compatible browsers installed, without any

other mandatory component on the devices. For

any application targeted at mobile devices,

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

consumes less power is perennially one of the

major concerns and challenges. Our work is able to

achieve a significant (about 30%) power saving, by

opportunistically switching the device between

low-power and high-power transmission modes

during streaming. Some existing work (e.g.,

Anastasi et al. [9]) have provided valuable

guidelines for energy saving over WiFi

transmissions; our work focuses on 3G cellular

transmissions which have significantly different

power models; 3G is a more practical wireless

connection technology for mobile TVs on the go at

the present time. Cloud computing had its debut

with much fanfare and is now deemed a most

powerful hosting platform in many areas including

mobile computing. Satyanarayan an et al. [1]

suggest offloading mobile devices computation

workload to a nearby resource-rich infrastructure

(i.e., Cloudlets) by dynamic VM synthesis. Kosta et

al. [2] propose a virtualization framework for

mobile code offloading to the cloud. Zhang et al.

[10] introduce an elastic mobile application model

by offloading part of the applications (weblets) to

an IaaS cloud. Recently, attentions have been

drawn to enabling media applications using th

cloud, for both media storage [11] and processing

[12] Conversely, the prototype we implement is

browser-based and platform independent; it

supports both live channels, VoD channels and

personal channels hosted by any user, with wider

usage ranges and flexible extensibility.

Fig. 1. The architecture of Smart T.V.

3. Smart T.V: Architecture and Design

As a novel Cloud-based Mobile Smart TV

system, Smart T.V provides two major

functionalities to participating mobile users:

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr

)

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

consumes less power is perennially one of the

major concerns and challenges. Our work is able to

achieve a significant (about 30%) power saving, by

ically switching the device between

power transmission modes

during streaming. Some existing work (e.g.,

Anastasi et al. [9]) have provided valuable

guidelines for energy saving over WiFi

transmissions; our work focuses on 3G cellular

ansmissions which have significantly different

power models; 3G is a more practical wireless

connection technology for mobile TVs on the go at

the present time. Cloud computing had its debut

with much fanfare and is now deemed a most

orm in many areas including

mobile computing. Satyanarayan an et al. [1]

suggest offloading mobile devices computation

rich infrastructure

(i.e., Cloudlets) by dynamic VM synthesis. Kosta et

amework for

mobile code offloading to the cloud. Zhang et al.

[10] introduce an elastic mobile application model

by offloading part of the applications (weblets) to

an IaaS cloud. Recently, attentions have been

drawn to enabling media applications using the

cloud, for both media storage [11] and processing

[12] Conversely, the prototype we implement is

based and platform independent; it

supports both live channels, VoD channels and

personal channels hosted by any user, with wider

exible extensibility.

Fig. 1. The architecture of Smart T.V.

3. Smart T.V: Architecture and Design

based Mobile Smart TV

system, Smart T.V provides two major

functionalities to participating mobile users:

(1) Universal streaming. A user can stream a

live or on-demand video from any video sources he

chooses, such as a TV program provider or an

Internet video streaming site, with tailored

encoding formats and rates for the device each

time.

(2) Co-viewing with social exchanges. A user

can invite multiple friends to watch the same video,

and exchange text messages while watching. The

group of friends watching the same video is

referred to as a session. The mobile user who

initiates a session is the host of the

present the architecture of Smart T.V and the

detailed designs of the different modules in the

following.

3.1. Key Modules

Fig. 1 gives an overview of the architecture of

Smart T.V. A surrogate (i.e., a virtual machine

(VM) instance), or a VM surrogate equivalently, is

created for each online mobile user in an IaaS

cloud infrastructure. The surrogate acts as a proxy

between the mobile device and the video sources,

providing transcoding services as well as

segmenting the streaming traffic for

transmission to the user. The surrogates exchange

social messages via a back-end PaaS cloud, which

adds scalability and robustness to the system. There

is a gateway server in Smart T.V that keeps track of

participating users and their VM surrogates,

can be implemented by a standalone server or VMs

in the IaaS cloud. The design of Smart T.V can be

divided into the following major functional

modules.

• Transcoder: It resides in each surrogate, and

is responsible for dynamically deciding how to

encode the video stream from the video source in

the recommended format, dimension, and bit rate.

Before deliver to the user, the video stream is

further encapsulated into a proper transport stream.

In our implementation, each video is exported as

MPEG-2 transport streams, which is the de

standard nowadays to deliver digital video and

audio streams over lossy medium.

• Reshaper: The reshaper in each surrogate

receives the encoded transport stream from the

transcoder, chops it into

segments, and then sends each segment in a

burst to the mobile device upon its request (i.e., a

burst transmission mechanism), to achieve the best

power efficiency of the device. The burst size, i.e.,

the amount of data in each burst, is carefully

decided according to the 3G tec

implemented by the corresponding carrier.

• Social Cloud: The social cloud is built on top

of any general PaaS cloud services with BigTable

like data store to yield better economies of scale

without being locked down to any specific

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 3

(1) Universal streaming. A user can stream a

demand video from any video sources he

chooses, such as a TV program provider or an

Internet video streaming site, with tailored

encoding formats and rates for the device each

th social exchanges. A user

can invite multiple friends to watch the same video,

and exchange text messages while watching. The

group of friends watching the same video is

referred to as a session. The mobile user who

initiates a session is the host of the session. We

present the architecture of Smart T.V and the

detailed designs of the different modules in the

Fig. 1 gives an overview of the architecture of

Smart T.V. A surrogate (i.e., a virtual machine

M surrogate equivalently, is

created for each online mobile user in an IaaS

cloud infrastructure. The surrogate acts as a proxy

between the mobile device and the video sources,

providing transcoding services as well as

segmenting the streaming traffic for burst

transmission to the user. The surrogates exchange

end PaaS cloud, which

adds scalability and robustness to the system. There

is a gateway server in Smart T.V that keeps track of

participating users and their VM surrogates, which

can be implemented by a standalone server or VMs

in the IaaS cloud. The design of Smart T.V can be

divided into the following major functional

• Transcoder: It resides in each surrogate, and

is responsible for dynamically deciding how to

video stream from the video source in

the recommended format, dimension, and bit rate.

Before deliver to the user, the video stream is

further encapsulated into a proper transport stream.

In our implementation, each video is exported as

sport streams, which is the de-facto

standard nowadays to deliver digital video and

• Reshaper: The reshaper in each surrogate

receives the encoded transport stream from the

s each segment in a

burst to the mobile device upon its request (i.e., a

burst transmission mechanism), to achieve the best

power efficiency of the device. The burst size, i.e.,

the amount of data in each burst, is carefully

decided according to the 3G technologies

implemented by the corresponding carrier.

• Social Cloud: The social cloud is built on top

of any general PaaS cloud services with BigTable

like data store to yield better economies of scale

without being locked down to any specific

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 4

proprietary platforms. Despite its implementation

on Google App Engine (GAE) as a proof of

concept, our Function prototype can be readily

ported to other platforms. It stores all the social

data in the system, including the online statuses of

all users, records of the existing sessions, and

messages (invitations and chat histories) in each

session. The social data are categorized into

different kinds and split into different entities (in

analogy to tables and rows in traditional relational

database, respectively). The social cloud is queried

from time to time by the VM surrogates.

• Messenger: The messenger is the client part

of the social cloud, residing in each surrogate in the

IaaS cloud. The Messenger periodically queries the

social cloud for the social data on behalf of the

mobile user and pre-processes the data into a light-

weighted format (plain text files), at a much lower

frequency. The plain text files (in XML formats)

are asynchronously delivered from the surrogate to

the user in a traffic-friendly manner, i.e., little

traffic is incurred. In the reverse direction, the

messenger disseminates this user’s messages

(invitations and chat messages) to other users via

the data store of the social cloud.

• Syncer: The syncer on a surrogate guarantees

that viewing progress of this user is within a time

window of other users in the same session (if the

user chooses to synchronize with others). To

achieve this, the syncer periodically retrieves the

current playback progress of the session host and

instructs its mobile user to adjust its playback

position. In this way, friends can enjoy the “sitting

together” viewing experience. Different from the

design of communication among messengers.

• Mobile Client: The mobile client is not

necessary to install any specific client software in

order to use Smart T.V, as long as it has an

HTML5 compatible browser (e.g., Mobile Safari,

Chrome, etc.) and supports the HTTP Live

Streaming protocol [13]. Both are widely supported

on most state-of-the-art smart phones.

• Gateway: The gateway provides

authentication services for users to log in to the

Smart T.V system, and stores users credentials in a

permanent table of a MySQL database it has

installed. It also stores information of the pool of

currently available VMs in the IaaS cloud in

another in-memory table. After a user successfully

logs in to the system, a VM surrogate will be

assigned from the pool to the user. The in-memory

table is used to guarantee small query latencies,

since the VM pool is updated frequently as the

gateway reserves and destroys VM instances

according to the current workload. We describe the

key designs in Smart T.V in the following.

3.2. Loosely Coupled Interfaces

Similar in spirit to web services, the interfaces

between different modules in Smart T.V, i.e.,

mobile users, VM surrogates, and the social cloud,

are based on HTTP, a universal standard for all

Internet-connected devices or platforms. Thanks to

the loose coupling between users and the

infrastructure, almost any mobile device is ready to

gain access to the Smart T.V services, as long as it

is installed with an HTTP5 browser. The VM

surrogates provisioned in the IaaS cloud co-operate

with the social cloud implemented on a PaaS cloud

service via HTTP as well, with no knowledge of

the inner components and underlying technologies

of each other, which contributes significantly to the

portability and easy maintenance of the system. For

social message exchanges among friends, Smart

T.V employs asynchronous communication.

3.3. Pipelined Video Processing

Both live streaming of real time contents and on-

demand streaming of stored contents are supported

in Smart T.V. Video processing in each surrogate is

designed to work on the fly, i.e., the transcoder

conducts real time encoding from the video source,

the encoded video is fed immediately into the

reshaper for segmentation and transmission, and a

mobile user can start viewing the video as soon as

the first segment is received. To support dynamic

bit rate switch, the transcoder launches multiple

threads to transcode the video into multiple bit rates

once the connection speed between the surrogate

and the mobile user changes. The IaaS represents

an ideal platform for implementing such

computation intensive jobs.

3.4. Burst Transmissions

 3.4.1 3G Power States

Different from Wi-Fi which is more similar to the

LANed Internet access, 3G cellular services suffer

from the limited radio resources, and therefore each

user equipment (UE) needs to be regulated by a

Radio Resource Control (RRC) state machine.

Different 3G carriers may customize and deploy

complex states in their respective cellular networks.

Different states indicate different levels of allocated

radio resources, and hence different levels of

energy consumptions. For ease of implementation,

we consider three basic states in our design, which

are commonly employed by many carriers, namely

CELL_DCH (a dedicated physical channel is

allocated to the UE in both the uplink and the

downlink), CELL_FACH (no dedicated channel is

allocated but the UE is assigned a default common

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

transport channel in the uplink), and IDLE, in

decreasing order of power levels. Contrary to

intuition, the energy consumption for data

transmission depends largely on the state a UE is

working in, but has little to do with the volume of

data transmitted, i.e., a UE may stay at a high

power state (CELL_DCH) for data transmission

even the data rate is very low (this has also been

verified in our experiments in Section V). For

example, if a UE working at a high-

does not incur any data traffic for a pre

period of time (measured by a critical inactivity

timer), the state of the UE will be transferred to a

low-power one; when the volume of data traffic

rises, the UE “wakes up” from a low

and moves to a high-power one.

3.4.2 Transmission Mechanism

In Smart T.V, we aim at maximum conservation of

the battery capacity of the mobile device, and

design a burst transmission mechanism for

streaming between the surrogate and the device.

Using the HTTP live streaming protocol [13], the

mobile device sends out requests for the next

segment of the video stream from time to time. The

surrogate divides the video into segments, and

sends each segment in a burst transmission to the

mobile device, upon such a request. When the

mobile device is receiving a segment, it operates in

the high-power state (CELL_DCH); when there is

nothing to receive, it transfers to the low

state (IDLE) via the intermediate state

(CELL_FACH), and remains there until the next

burst (segment) arrives.

 3.4.3 Burst Size

To decide the burst size, i.e., the size of the

segment transmitted in one burst, we need to take

into consideration characteristics of m

streaming and energy consumption during state

transitions. For video streaming using a fixed

device without power concerns, it is desirable to

download as much of a video as what the

connection bandwidth allows; however, for

streaming over a cellular network, leading to a

waste of the battery power and the cellular data fee

due to their download. Hence, the bursty size

should be kept small, to minimize battery

consumption and traffic charges. We next derive a

lower bound on the burst size, which guara

positive energy saving by such intelligent state

transition as compared to the continuous

transmission, as follows:

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr

)

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

transport channel in the uplink), and IDLE, in

decreasing order of power levels. Contrary to

intuition, the energy consumption for data

ion depends largely on the state a UE is

working in, but has little to do with the volume of

data transmitted, i.e., a UE may stay at a high-

power state (CELL_DCH) for data transmission

even the data rate is very low (this has also been

eriments in Section V). For

-power state

does not incur any data traffic for a pre-configured

period of time (measured by a critical inactivity

timer), the state of the UE will be transferred to a

olume of data traffic

rises, the UE “wakes up” from a low-power state

In Smart T.V, we aim at maximum conservation of

the battery capacity of the mobile device, and

mechanism for

streaming between the surrogate and the device.

Using the HTTP live streaming protocol [13], the

mobile device sends out requests for the next

segment of the video stream from time to time. The

surrogate divides the video into segments, and

ends each segment in a burst transmission to the

mobile device, upon such a request. When the

mobile device is receiving a segment, it operates in

power state (CELL_DCH); when there is

nothing to receive, it transfers to the low-power

via the intermediate state

(CELL_FACH), and remains there until the next

To decide the burst size, i.e., the size of the

segment transmitted in one burst, we need to take

into consideration characteristics of mobile

streaming and energy consumption during state

transitions. For video streaming using a fixed

device without power concerns, it is desirable to

download as much of a video as what the

connection bandwidth allows; however, for

network, leading to a

waste of the battery power and the cellular data fee

due to their download. Hence, the bursty size

should be kept small, to minimize battery

consumption and traffic charges. We next derive a

lower bound on the burst size, which guarantees

positive energy saving by such intelligent state

transition as compared to the continuous

Fig. 2: Power consumption over time.

4. Live T.V: Prototype Implementation

Following the design guidelines in Section III, we

have implemented a real-world mobile social TV

system, and deployed it on the Google App Engine

(GAE) and Amazon EC2 clouds, which are the two

most widely used public PaaS and IaaS cloud

platforms. GAE, as a PaaS cloud, provides rich

services on top of Google’s data centers and

enables rapid deployment of Java

Python-based applications. Hence, GAE is an ideal

platform for implementing our social cloud, which

dynamically handles large volumes of messages.

On the other hand, GAE imposes many constra

on application deployment, e.g., lack of support for

multi-threading, file storage, etc., which may

hinder both computation-intensive jobs and content

distribution applications. Amazon EC2 is a

representative IaaS cloud, offering raw hardware

resources including CPU, storage, and networks to

users. Comparing to a common PaaS cloud, EC2 is

an appropriate platform for computation

tasks in Smart T.V.

4.1. Client Use of Smart T.V

All mobile devices installed with HTML5

compatible browsers can use Smart T.V services,

as long as the HTTP Live Streaming (HLS) [13]

protocol is supported. The user first connects to the

login page of Smart T.V, as illustrated in the top

left corner of Fig. 3. After the user successfully

logs in through the gateway, he is assigned a VM

surrogate from the VM pool (the hostnames of

available VMs, e.g., ec2-50-16-

1.amazonaws.com, are maintained in an in

table of a MySQL database deployed in the

gateway). Then the user is automatically redirected

to the assigned VM surrogate, and welcomed by a

portal page as shown on the right-hand side of Fig.

3. Upon user login, the portal collects the device

configuration information by examining the “User

Agent” header values, and this information will be

sent to its surrogate for decision making of the

video encoding formats. The user can enter the

URL of the video or live broadcast he wishes to

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 5

Fig. 2: Power consumption over time.

4. Live T.V: Prototype Implementation

Following the design guidelines in Section III, we

world mobile social TV

system, and deployed it on the Google App Engine

(GAE) and Amazon EC2 clouds, which are the two

most widely used public PaaS and IaaS cloud

platforms. GAE, as a PaaS cloud, provides rich

gle’s data centers and

enables rapid deployment of Java-based and

based applications. Hence, GAE is an ideal

platform for implementing our social cloud, which

dynamically handles large volumes of messages.

On the other hand, GAE imposes many constraints

on application deployment, e.g., lack of support for

threading, file storage, etc., which may

intensive jobs and content

distribution applications. Amazon EC2 is a

representative IaaS cloud, offering raw hardware

es including CPU, storage, and networks to

users. Comparing to a common PaaS cloud, EC2 is

an appropriate platform for computation-intensive

All mobile devices installed with HTML5

use Smart T.V services,

as long as the HTTP Live Streaming (HLS) [13]

protocol is supported. The user first connects to the

login page of Smart T.V, as illustrated in the top

left corner of Fig. 3. After the user successfully

e is assigned a VM

surrogate from the VM pool (the hostnames of

-xx-xx.compute-

1.amazonaws.com, are maintained in an in-memory

table of a MySQL database deployed in the

gateway). Then the user is automatically redirected

e assigned VM surrogate, and welcomed by a

hand side of Fig.

3. Upon user login, the portal collects the device

configuration information by examining the “User-

Agent” header values, and this information will be

s surrogate for decision making of the

video encoding formats. The user can enter the

URL of the video or live broadcast he wishes to

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

watch, on the “Subscribe” tab of the portal; after he

clicks the “Subscribe” button, the address of the

video is sent to the VM surrogate, which

downloads the stream on the user’s behalf,

transcodes and sends properly encoded segments to

the user. When watching a video, the user can

check out his friends’ status (online or offline,

which video they are currently watching) on

“Friends” tab (a snapshot is given in Fig. 4(a)), and

invite one or more friends to join him in watching

the video.. Users in the same session can exchange

opinions and comments on the “Chat” tab (a

snapshot is given in Fig. 4(b)), where new chat

messages can be entered and the chat history of the

session is shown.

4.2. VM Surrogates

All the VM surrogates are provisioned from

Amazon EC2 web services and tracked by the

gateway. We create our own AMI (ami

based on Linux kernel 2.6.35.14, the default image

Amazon provides [15]. Due to the intensive

computation involved, we propose to implement all

the video processing related tasks using ANSI C, to

guarantee the performance. We have also installed

a Tomcat web server (version 6.5) to serve as a

Servlet container and a file server on each

surrogate. Both FFmpeg and Tomcat are open

source projects. Once a VM surrogate receives a

video subscription request from the user, it

downloads the video from the source URL, and

processes the video stream by transcoding and

segmentation, based on the collected device

configurations by the portal. For example, in our

experiments, the downloaded stream is transcoded

into a high-quality stream from a low

stream depends on the device capability.

Fig. 3. Client UI of Smart T.V

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr

)

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

watch, on the “Subscribe” tab of the portal; after he

clicks the “Subscribe” button, the address of the

he VM surrogate, which

downloads the stream on the user’s behalf,

transcodes and sends properly encoded segments to

the user. When watching a video, the user can

check out his friends’ status (online or offline,

which video they are currently watching) on the

“Friends” tab (a snapshot is given in Fig. 4(a)), and

invite one or more friends to join him in watching

the video.. Users in the same session can exchange

opinions and comments on the “Chat” tab (a

snapshot is given in Fig. 4(b)), where new chat

ges can be entered and the chat history of the

All the VM surrogates are provisioned from

Amazon EC2 web services and tracked by the

gateway. We create our own AMI (ami-b6f220df)

default image

Amazon provides [15]. Due to the intensive

computation involved, we propose to implement all

the video processing related tasks using ANSI C, to

guarantee the performance. We have also installed

a Tomcat web server (version 6.5) to serve as a

Servlet container and a file server on each

surrogate. Both FFmpeg and Tomcat are open

source projects. Once a VM surrogate receives a

video subscription request from the user, it

downloads the video from the source URL, and

transcoding and

segmentation, based on the collected device

configurations by the portal. For example, in our

experiments, the downloaded stream is transcoded

quality stream from a low-quality

stream depends on the device capability.

Fig. 4. “Friend” and “Chat” tabs. (a) “Friend tab” (b) “Chat tab”.

The high-quality stream has a “480 272” resolution

with 24 frames per second, while the low

one has a “240 136” resolution with 10 frames per

second. Fig. 5 shows the streaming architecture in

our customized VM image. Here, the modules on

social message exchanges are omitted, which will

be presented in Fig. 6.

4.3 Data Models in the Social Cloud

We use GAE mainly as the back-end data store to

keep the

transient states and data of Smart T.V, including

users online presence status, social messages

(invitation and chat messages) in all the sessions.

With Jetty as the underlying Servlet container, most

Java-based applications can be easily migrated to

GAE, under limited usage constraints, where no

platform-specific APIs are enforced for the

deployment. GAE provides both its Java

Persistence API.

Fig. 5. Streaming architecture in each customized VM image

(ami-b6f220df).

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 6

Fig. 4. “Friend” and “Chat” tabs. (a) “Friend tab” (b) “Chat tab”.

quality stream has a “480 272” resolution

with 24 frames per second, while the low-quality

one has a “240 136” resolution with 10 frames per

Fig. 5 shows the streaming architecture in

our customized VM image. Here, the modules on

social message exchanges are omitted, which will

4.3 Data Models in the Social Cloud

end data store to

transient states and data of Smart T.V, including

users online presence status, social messages

(invitation and chat messages) in all the sessions.

With Jetty as the underlying Servlet container, most

based applications can be easily migrated to

AE, under limited usage constraints, where no

specific APIs are enforced for the

deployment. GAE provides both its Java

Fig. 5. Streaming architecture in each customized VM image

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

Fig. 6. Social message exchanges via Google App Engine.

5. REAL-WORLD EXPERIMENTS

We carry out both unit tests and performance

evaluations of Smart T.V deployed on Amazon

EC2 and Google App Engine. The experiments are

conducted over the 3G cellular network of 3HK,

which is one of the largest Telecom operators in

Hong Kong. Fig. 7 shows the power consumption

levels on the phone over time, in terms of portions

of the highest device power level. The red vertical

lines represent the starting points of playback

periods when the Safari runs in the foreground, and

the green lines represent the finish times of

playback periods when the Safari is suspended in

the background. We can see that our state transition

model in Fig. 2 is verified by these real

measurements: when there is data transmission, the

device operates at the high power mode; when data

transmission stops, the transmission power of the

device first decreases to an intermediate level, and

then to a very low level.

Fig. 7. Power consumption over time on an iPhone 4

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr

)

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

exchanges via Google App Engine.

WORLD EXPERIMENTS

We carry out both unit tests and performance

evaluations of Smart T.V deployed on Amazon

EC2 and Google App Engine. The experiments are

conducted over the 3G cellular network of 3HK,

e of the largest Telecom operators in

Hong Kong. Fig. 7 shows the power consumption

levels on the phone over time, in terms of portions

of the highest device power level. The red vertical

lines represent the starting points of playback

ari runs in the foreground, and

the green lines represent the finish times of

playback periods when the Safari is suspended in

the background. We can see that our state transition

model in Fig. 2 is verified by these real-world

data transmission, the

device operates at the high power mode; when data

transmission stops, the transmission power of the

device first decreases to an intermediate level, and

Fig. 7. Power consumption over time on an iPhone 4S.

Fig. 8. Power consumption over time with different burst

transmission sizes

5.1. Startup Latency of Video Playback

We evaluate the transcoding performance on the

surrogates in Smart TV, first by measuring the

playback startup latency on the surrogates, from the

time when the video subscription request is

received from the mobile user to the time when the

first transcoded burst segment is generated. In our

experiments, we tested the network connection

bandwidth between the Amazon EC2 instances

the YouTube website, and found that video

downloading from YouTube website to the

instances is very fast. Fig 9 shows that in general,

the longer the burst interval is, the larger the

segment of video to transcode is, and thus the

longer the startup latency.

5.2. Social Interaction Latencies

The service latency of Google Ap

critical to theoverall performance of Smart TV. In

this set of experiments we launch a VM surrogate

in each of four different regions (corresponding to

four mobile users), i.e., “east-1

“east-1-c” and “east-1-d”, all of which join the

same session.

uding

Fig. 9. Jitters and the stall durations

Fig. 10. Post latency to GAE.

Fig. 11. Query latency from GAE.

We evaluate two critical latencies: one is the post

latency to the GAE, i.e., the time from when a

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 7

Fig. 8. Power consumption over time with different burst

5.1. Startup Latency of Video Playback

We evaluate the transcoding performance on the

surrogates in Smart TV, first by measuring the

surrogates, from the

time when the video subscription request is

received from the mobile user to the time when the

first transcoded burst segment is generated. In our

experiments, we tested the network connection

bandwidth between the Amazon EC2 instances and

the YouTube website, and found that video

downloading from YouTube website to the

instances is very fast. Fig 9 shows that in general,

the longer the burst interval is, the larger the

segment of video to transcode is, and thus the

The service latency of Google App Engine is

overall performance of Smart TV. In

this set of experiments we launch a VM surrogate

in each of four different regions (corresponding to

1-a”, “east-1-b”,

d”, all of which join the

Fig. 9. Jitters and the stall durations

Fig. 10. Post latency to GAE.

Fig. 11. Query latency from GAE.

We evaluate two critical latencies: one is the post

latency to the GAE, i.e., the time from when a

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 8

message is sent out from a surrogate to the time

when it receives confirmation from GAE that the

message is successfully recorded in the social

cloud; the other is the query latency, i.e., the time

from when a query is sent out from a surrogate to

the time when the queried message is received at

the surrogate. Figs. 10 and 11 show the average

values of the two types of latencies among

surrogates in all regions, during a 155-second run

of the experiments. Our results are mostly

consistent with the 978-ms post latency and 106-ms

query latency (our latencies additionally include a

round-trip time between a surrogate and the GAE).

Confirming the detailed reason is part of our future

work.

6. Concluding Remarks and Future

Enhancement

This paper presents our view of what might become

a trend

for mobile TV, i.e., mobile social TV based on

agile resource supports and rich functionalities of

cloud computing services. We introduce a generic

and portable mobile social TV framework, Smart

T.V, that makes use of both an IaaS cloud and a

PaaS cloud. The framework provides efficient

transcoding services for most platforms under

various network conditions and supports for co-

viewing experiences through timely chat exchanges

among the viewing users. By employing one

surrogate VM for each mobile user, we achieve

ultimate scalability of the system. Through an in-

depth investigation of the power states in

commercial 3G cellular networks, we then propose

an energy- efficient burst transmission mechanism

that can effectively increase the battery lifetime of

user devices. We have implemented a realistic

prototype of Smart T.V, deployed on Amazon EC2

and Google App Engine, where EC2 instances

serve as the mobile users’ surrogates and GAE as

the social cloud to handle the large volumes of

social message exchanges. The experimental results

prove the superior performance of Smart T.V, in

terms of transcoding efficiency, power saving,

timely social interaction, and scalability. Much

more, however, can be done to enhance Smart T.V

to have product-level performance. In the current

prototype, we do not enable sharing of encoded

streams (in the same format/bit rate) among

surrogates of different users. In our future work,

such sharing can be enabled and carried out in a

peer-to-peer fashion, e.g., the surrogate of a newly

joined user may fetch the transcoded streams

directly from other surrogates, if they are encoded

in the format/bit rate that the new user wants. For

implementing social interactions, most BigTable-

like data stores (including GAE) support memcache

[17] which is a highly efficient secondary storage

on the data stores.

References

[1] M. Satyanarayanan, P. Bahl, R. Caceres, and N.

Davies, “The case for VM-based Cloudlets in mobile

computing,” IEEE Pervasive Comput.,vol. 8, pp. 14–

23, 2009.

[2] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X.

Zhang, “Thinkair: Dynamic resource allocation and

parallel execution in the cloud for mobile code

offloading,” in Proc. IEEE INFOCOM, 2012.

[3] T. Coppens, L. Trappeniners, and M. Godon,

“AmigoTV: Towards a social TV experience,” in

Proc. EuroITV, 2004.

[4] N. Ducheneaut, R. J. Moore, L. Oehlberg, J. D.

Thornton, and E. Nickell, “Social TV: Designing for

distributed, sociable television viewing,” Int. J.

Human-Comput. Interaction, vol. 24, no. 2, pp. 136–

154, 2008.

[5] What is 100% Pure Java. [Online]. Available:

ttp://www.javacoffeebreak.com/faq/faq0006.html.

[6] M. Chuah, “Reality instant messaging: Injecting a

dose of reality into online chat,” in CHI ’03 Extended

Abstracts on Human Factors in Computing Syst.,

2003, ser. CHI EA ’03, pp. 926–927.

[7] R. Schatz, S. Wagner, S. Egger, and N. Jordan,

“Mobile TV becomes social – Integrating content

with communications,” in Proc. ITI, 2007.

[8] R. Schatz and S. Egger, “Social interaction features

for mobile TV services,” in Proc. 2008 IEEE Int.

Symp. Broadband Multimedia Syst. And

Broadcasting, 2008.

[9] G. Anastasi, M. Conti, E. Gregori, and A. Passarella,

“Saving energy in Wi-Fi hotspots through 802.11

psm: An analytical model,” in Proc Workshop

Linguistic Theory and Grammar Implementation,

ESSLLI2000, 2004, pp. 24–26.

[10] X. Zhang, A. Kunjithapatham, S. Jeong, and S.

Gibbs, “Towards an elastic application model for

augmenting the computing capabilities of mobile

devices with cloud computing,” Mobile Netw.

Applicat., pp. 1–15, Apr. 2011.

[11] W. Zhu, C. Luo, J. Wang, and S. Li, “Multimedia

cloud computing,” IEEE Signal Process. Mag., vol.

28, pp. 59–69, 2011.

[12] R. Pereira and K. Breitman, “A cloud based

architecture for improving video compression time

efficiency: The split & merge approach,” in Proc.

DCC’11, 2011, pp. 471–471.

 [13] HTTP Live Streaming. [Online]. Available:

http://tools.ietf.org/html/draft-pantos-http-live-

streaming-01.

[14] 3GPP TS 25.331. [Online]. Available: html-

info/25331.htm.

[15] Amazon EC2. [Online]. Available:

http://www.3gpp.org/ftp/Specs/http://aws.amazon.co

m/ec2/.

[16] FFmpeg. [Online]. Available: http://ffmpeg.org/.

[17]What is Memcached. [Online]. Available:

http://memcached.org/.r.

